Journal of Surface Analysis Vol. 5 No.1 (1999, T.Watanabe et al.

Smoothing of Chemical Analysis Data by Neural Networks

Smoothing of Chemical Analysis Data by Neural Networks

T Watanabe, S.Kishida, TKawai, K .Ishihara, H. Tokutaka and S Fukushima*

Dept. of Electrical and Electronic Eng., Tottori University
4-101 Minami, Koyama-cho, Tottori 680-09435, Japan
* National Institute for Research in Inorganic Materials

1-1 Namiki, Sakura, Tsukuba, Ibaragi 305-0003, Japan

(Received October 2 1998; accepted January 18 1999)

We applied neural networks to the smoothing of chemical data. The input data corresponding to  the spectra of
X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were prepared by adding the
noise to the original signals, which consist of one peak or two peaks with a Gaussian distribution. The results of
smoothing by neural networks were compared with those by the previous methods, that is, a polynomial
approximation method or a spline method. From the results, we found that the signal curve was able to be
reproduced, even if 200% noise was included in the input pattern. Therefore, the neural network is thought to be

effective in smoothing the chemical data including noise.

1. INTRODUCTION

In general, the spectra observed with various
chemical analysis methods such as X-ray
photoelectron spectroscopy (XPS) and Auger
electron spectroscopy (AES) included the noise,
which is caused by the performance of
experimental instruments. In order to analyze
the spectra, it is necessary to remove a
background from the spectra and to smooth the
chemical data. Especially, the smoothing of
chemical data has been carried out by a spline
method, a polynomial approximation method
and a method of least squares up to date.
However, there are many problems when above
methods are used for real chemical data. One of
them is to determine many optimum parameters
for the smoothing of chemical data, which has
been searched by trial and error. The optimum
parameters directly affect the results of
smoothing.

Neural networks are applied to various fields.
The typical neural network with unsupervised
learning or competitive learning is self-
organizing maps (SOM)[1,2,3,4,5], whereas the
typical neural network with a supervised
learning is a back-propagation method (BP)
[6,7,8,9].

Recently, the neural networks begun to be
applied to the analysis of chemical data. We
previously reported that the neural networks
with  SOM and BP method were useful in
analyzing XPS and AES data quantitatively
without determining the number and the shape
of XPS or AES peaks[10,11]. In addition, we
reported that XPS and AES spectra were able
to be classified by the neural networks without
any pre-processing of chemical data in order to

identify the chemical species[11,12]. However,
the performance of neural networks for the
smoothing of chemical data is not clarified
significantly.

In this study, we applied neural networks to the
smoothing of chemical data, for example, XPS
and AES spectra. Here, two BP neural
networks were used for smoothing of chemical
data.

2. EXPERIMENTAL

We used three-layered neural network of BP1
with input layer (1 unit), hidden layer (10 units)
and output layer (1 unit) as shown in Fig.1. The
learning algorithm was a Back Propagation
(BP) method. Here, the input data is the Y-
value for the X-value on the signal curve. In the
neural network learning coefficient and
momentum factor in BP1 networks were 0.8
and 0.9, respectively.

The input patterns for learning and testing were
prepared by adding the noise to the original
signal curves, which consist of one peak or two
peaks with a Gaussian distribution. X% noise
of the average of Y-values over the signal
curve was added to the signal curves. The
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experimental results were obtained for the
noise range from X=0 to 300%. When the
curves of signal + X% noise were used as an
input pattern, we investigated whether the
signal curve can be reproduced after learning.
The curve of the signal + X% noise was
prepared as input patterns. Since we know the
solution for input patterns, we can exactly
estimate the performance of neural networks
for the smoothing of input patterns.

Fig.2 shows the three-layered neural network of
BP2 with input layer (80 units), hidden layer
(10 units) and output layer (80 units). The
learning algorithm was a BP method. In the
neural network learning coefficient and
momentum factor in BP2 networks were 0.8
and 0.9, respectively.

3. RESULTS and DISCUSSION

Fig.3 shows the curves of signal, signal + 300%
noise and the calculated results. The signal +
300% noise was prepared by adding 300%
noise to the signal curve, which consists of one
peak with a Gaussian distribution. The result
was obtained with the BP1 neural network
(after learning). After learning iterations of
10,000, the curve of signal + 300% noise
became smooth, which was nearly equal to the
curve of signal. The result calculated by a sixth
polynomial approximation method, was nearly
equal to the result after learning. However, the
result at about X=0 and X=1.0 was very
different from the signal curve and the result
after learning with the BP1 neural network.
Although the figure are not shown, the results
after learning tend to approach to the signal
curve with increasing learning iterations. In
addition, the result of BP1 neural network may
be improved and modified by using an
optimum network structure.

Fig.4 shows the curves of signal, signal + 200%
noise and the calculated results. The signal +
200% noise was prepared by adding 200%
noise to the signal curve, which consists of two
peaks with a Gaussian distribution.  After
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50,000 learning iterations, the result was nearly
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equal to the signal curve except X=0, whereas
the result obtained by the sixth polynomial
approximation method was different from the
signal curve. This indicates that the signal
curve was able to be reproduced by using the
neural network of BP1, even if 200% noise was
included in the signal curve. Therefore, the
neural network of BP1 after learning can
reproduce the signal curve better than the sixth
polynomial approximation method.

Fig.5 shows the square error of the BP1 neural
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Fig.6 Square errors by various methods of a BPI
neural network, a 3rd spline method and a 1lth
polynomial approximation method.

network as a function of learning iteration. The
square error begins to decrease with increasing
learning iteration. Then, the square error
became minimum at about 30,000 learning
iterations, and again increased with learning
iterations. Finally, the square error of BP1
neural network was saturated at about 60,000
learning iterations.

Although the figures were not shown, the
smoothing of the signal + 200% noise curve
was also carried out with a third spline method
and an eleventh polynomial approximation
method. The result obtained eleventh
polynomial approximation method was nearly
equal to that with the BP1 neural network
except both edges, where the BP1 neural
network was better than the eleventh
polynomial approximation method. The result
obtained with the third spline method was
nearly equal to that with the BP1 neural
network except about a high peak, where the
BP1 neural network was better than the third
spline method. We calculated the square error
of the results obtained with the BP1 neural
network, the third spline method and the
eleventh polynomial approximation method for
the original signal curve.

Fig.6 shows the square error of the results for
the input signal curve. The results were
calculated with the neural network of BP1, the
third spline method and the eleventh
polynomial approximation method. The square
errors obtained with BP1 neural network and
the third spline method were less than that with
the eleventh polynomial approximation method
for the curve of signal + 100% noise. For the
input data of signal + 200% noise, the square
error obtained with the BP1 neural network was
less than that of the eleventh polynomial
approximation, and it was less than that of the
third spline method. From the results, we found
that the smoothing of the BP1 neural network
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was better than those of the third spline method
and the eleventh polynomial approximation
method for the input patterns of the signal +
100% and the signal + 200% noise.

Fig.7 shows the curves of signal, signal + 200%
noise and the calculated results. The signal +
200% noise was prepared by adding 200%
noise to the signal curve, which consists of one
peak with a Gaussian distribution. The result
obtained with the BP2 neural network was
approximately equal to the signal curve. This
indicated that the signal curve was able to be
reproduced by using the neural network of BP2,
even if 200% noise was contained in the input
pattern. However, the result obtained with the
sixth polynomial approximation method was
worse than that of the BP2 neural network.
Although the BP2 neural network is able to
reproduce the signal curve, the network has to
learn true data.

4. CONCLUSION

We applied neural networks of BP1 and BP2 to
the smoothing of chemical data, which were
prepared by adding noise to the peaks with a
Gaussian distribution. The neural network of
BP1 is effective in smoothing the chemical data
including noise, when the shape of the curve is
unknown. In addition, the neural network of
BP2 is effectively used for smoothing of the
data, when the original shape and function of
the curve is previously known. Therefore, the
neural networks are thought to be effective in
smoothing the chemical data including much
noise.
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